Preliminary communication

$(PPh_4)_3Ag[WF_5(C_2I_2)]_2$; SYNTHESE, IR-SPEKTRUM UND KRISTALLSTRUKTUR

AIDA EL-KHOLI, KARLHEINZ STAHL, ULRICH MÜLLER* und KURT DEHNICKE*

Fachbereich Chemie der Universität Marburg/Lahn, Hans-Meerwein-Strasse, D-3350 Marburg (Deutschland)

(Eingegangen den 10. September 1986)

Summary

The compound $(PPh_4)_3 Ag[WF_5(C_2I_2)]_2$ is formed by the reaction of PPh_4 -[WCl₅(C₂I₂)] with an excess of silver fluoride in acetonitrile. The compound is soluble in CH₂Cl₂; when CCl₄ is added single red crystals are obtained. The complex is characterized by its IR spectrum and by an X-ray structural study (4060 observed, independent reflexions, R = 0.105). Crystal data: orthorhombic, space group $P2_12_12$, Z = 2, a 4464(2), b 1074(1), c 777,6(4) pm. The compound consists of PPh₄⁺ and Ag⁺ ions, and the anions [WF₅(C₂I₂)]²⁻, in which the tungsten atoms are seven-coordinated by five fluorine atoms and two carbon atoms. The diiodoacetylene ligand is symmetrically bonded sideways to the tungsten atom. The four equatorial F atoms have W-F bond lengths of 191 pm, whereas the fluorine atom in *trans*-position to the WC₂ group is located 199 pm from the metal centre. The PPh₄⁺ ions are stacked in parallel columns.

In vorangegangenen Arbeiten haben wir über einige gegen Erwärmen und Schlag unempfindliche Dihalogenacetylenkomplexe des Wolframs berichtet, in denen der C_2X_2 -Ligand (X = Cl, Br, I) seitlich und symmetrisch an das Wolframatom gebunden ist [1-3]. Kristallographisch charakterisierte Beispiele sind PPh₄[WCl₅(C_2I_2)] · 0.5CH₂Cl₂ [1], PPh₄[WCl₅(C_2Cl_2)] · 0.5CCl₄ [2] und PPh₄[WBr₅(C_2Br_2)] · 0.5CCl₄ [3].

Synthese und IR-Spektrum von $(PPh_4)_3Ag[WF_5(C_2I_2)]_2$

In der Absicht, nun auch das Difluoracetylen als stabilen Komplexliganden zu erzeugen, haben wir PPh₄[WCl₅(C₂I₂)] mit überschüssigem Silberfluorid in einer Suspension in Acetonitril umgesetzt. Nach 24 h ist die Reaktion beendet, nach Filtration und Einengen zur Trockne wird der gelbe Rückstand in CH₂Cl₂ aufgenommen, wobei nach Zusatz von CCl₄ rote Kristalle der Titelverbindung (PPh₄)₃Ag[WF₅(C₂I₂)]₂ entstehen. Das Ergebnis ist in verschiedener Hinsicht

TA	BEL	LE	1		

IR-ABSORPTIONEN	۷)	$(cm^{-1}))$	DES	[WF ₅ ($C_{2}I_{2})]$	² IONS
------------------------	----	--------------	-----	--------------------	----------------	-------------------

cm ⁻¹	Int. ^a	Zuordnung	
1618	S	ν(C=C)	
845	st	$\nu(WC_2)$	
838	m	$\nu(WC_2)$	
625	sst)		
585	sst		
568	st 🎽	$\nu(WF_{equ.})$	
550	m /		
501	m		
482	st	$\nu(WF_{trans})$	
320	st)	· //uno/	
298	m >	δ(WF)	
280	m)		

^a sst = sehr stark, st = stark, m = mittel, s = schwach

überraschend: Es werden zwar die am Wolframatom gebundenen Chlorliganden glatt gegen F-Liganden ausgetauscht, die am Acetylenliganden gebundenen Iodatome hingegen nicht. Dagegen liessen sich die Iodatome im $PPh_4[WCl_5(C_2I_2)]$ mit Silberchlorid unter ähnlichen Reaktionsbedingungen leicht unter Bildung von $PPh_4[WCl_5(C_2Cl_2)]$ austauschen [2]. Wir müssen daher annehmen, dass zunächst rascher Austausch der Cl-Atome des $PPh_4[WCl_5(C_2I_2)]$ gegen F-Liganden stattfindet, danach aber die Iodatome des Diiodacetylenliganden gegen einen I/F-Austausch inhibiert sind.

Weiterhin ist der Einbau von Silberionen in das Kristallgitter und die Zusammensetzung $(PPh_4)_3Ag[WF_5(C_2I_2)]_2$ überraschend, da nun das Kationen/ Anionen-Verhältnis 2/1 gegenüber 1/1 in dem Edukt ist. Dies entspricht einer Reduktion des Wolframs von + IV nach + III. Als Reduktionsmittel kommt neben Acetonitril auch das zum Lösen benutzte Dichlormethan in Betracht; diese Frage harrt noch der Aufklärung.

Im IR-Spektrum (Tab. 1) entsprechen die Beobachtungen für die Lage der CC-Valenzschwingung des Diiodacetylenliganden und die relativ kurzwelligen Lagen der WC₂-Valenzschwingungen für das Anion $[WF_5(C_2I_2)]^{2-}$ den Erwartungen für eine cyclopropenartig gebundene WC₂-Gruppe [1-3]. Im Bereich der WF-Valenzschwingungen, für die umfangreiches Vergleichsmaterial vorliegt [4], treten insgesamt fünf Banden auf, was mit der niedrigen Symmetrie des Anions (s. u.) übereinstimmt. Eine dieser Banden ist mit 482 cm⁻¹ deutlich langwelliger als die übrigen vier (im Mittel etwa 590 cm⁻¹); wir ordnen sie daher der WF-Valenzschwingung des *trans*-ständigen Fluoratoms zu, da dessen WF-Bindungsabstand auch deutlich länger ist als der der übrigen WF-Bindungen (s. u.).

Kristallstrukturanalyse

Die kristallographischen Daten enthält Tab. 2, Tab. 3 die Bindungsabstände und -winkel, Tab. 4 die Atomkoordinaten *. Die Struktur des $[WF_5(C_2I_2)]^{2-}$ -Ions (Fig.

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-52136, des Autoren und des Zeitschriftenzitats angefordert werden.

TABELLE 2

KRISTALLDATEN UND ANGABEN ZUR KRISTALLSTRUKTURBESTIMMUNG VON $(PPb_4)_3Ag[WF_5(C_2I_2)]_2$

Gitterkonstanten	a 4464(2), b 1074(1), c 777.6(4) pm
Zellvolumen	$V 3727 \times 10^{-30} \text{ m}^3$
Zahl der Formeleinheiten pro Zelle	Z = 2
Dichte (berechnet)	2.00 g cm^{-3}
Kristallsystem, Raumgruppe	rhombisch, $P2_12_12$
Ausgelöschte Reflexe	h00 mit h = 2n + 1; 0k0 mit k = 2n + 1
Messgerät	Vierkreisdiffraktometer, Enraf-Nonius CAD4
Strahlung	Mo-K _a (Graphit-Monochromator) λ 71.07 pm
Messtemperatur	23°C
Zahl der Reflexe zur Gitterkonstantenberech-	17; 7 < θ < 17°
nung	
Messbereich, Abtastungsmodus	$\theta < 23^{\circ}; \omega$ -scan
Zahl der gemessenen Reflexe	5865
Zahl der unabhängigen Reflexe	5187
Zahl der unbeobachteten Reflexe	1121 mit $F < 2\sigma(F)$
Korrekturen	Lorentz- und Polarisationsfaktor
	Absorption, μ 47.4 (Transmissionsfaktoren 0.50
	bis 0.32)
Strukturaufklärung	Patterson- und Differenz-Fourier-Synthesen
Verfeinerung	Minimalisieren von $\Sigma(F_0 - F_c)^2$, Ein-
	heitsgewichte
Restriktionen	Phenylgruppen als starre Einheiten behandelt,
	C-C 139.5 und C-H 108 pm. Isotrope Tem-
×	peraturfaktoren für F, C, ein gemeinsamer iso-
	troper Temperaturfaktor für alle H-Atome
Verwendete Rechenprogramme	[5-7]
Atomformfaktoren, $\Delta f'$, $\Delta f''$	[8,9]
$R = \sum F_0 - F_c / \sum F_0 $	10.5% für 4060 beobachtete Reflexe

Fig. 1. Ansicht des $[WF_5(C_2I_2)]^{2-1}$ -Ions.

BINDUNGSABSTÄNDE (pm) UND-WINKEL (°) VON (PPh ₄) ₃ Ag[WF ₅ (C ₂ I ₂)] ₂				
W-F(1)	190(3)	F(1)-W-F(2)	94.1(13)	
W-F(2)	191(3)	F(1) - W - F(3)	85.1(15)	
W-F(3)	190(4)	F(1)-W-F(4)	165.3(11)	
W-F(4)	192(2)	F(1) - W - F(5)	82.2(11)	
W-F(5)	199(3)	F(2) - W - F(3)	165.5(15)	
W-C(1)	202(4)	F(2) - W - F(4)	82.5(11)	
W-C(2)	199(4)	F(2) - W - F(5)	81.5(11)	
C(1)-C(2)	115(6)	F(3) - W - F(4)	94.6(14)	
C(1) - I(1)	209(4)	F(3) - W - F(5)	84.1(14)	
C(2) - I(2)	212(4)	F(4) - W - F(5)	83.2(10)	
P(1)-C(11)	178(3)	F(1)-W-C(1)	106.8(15)	
P(1)-C(21)	178(3)	F(1) - W - C(2)	83.1(14)	
P(1)-C(31)	177(2)	F(2)-W-C(1)	108.9(15)	
P(1)-C(41)	175(3)	F(2)-W-C(2)	88.1(14)	
	*	F(3)-W-C(1)	85.0(17)	
P(2)-C(51)	176(3)	F(3) - W - C(2)	106.1(16)	
P(2)-C(61)	181(3)	F(4) - W - C(1)	87.7(14)	
		F(4) - W - C(2)	111.0(13)	
C(11) - P(1) - C(21)	103.6(12)	F(5) - W - C(1)	165.3(14)	
C(11) - P(1) - C(31)	112.3(11)	F(5) - W - C(2)	161.2(13)	
C(11) - P(1) - C(41)	108.8(12)	C(1) - W - C(2)	33.3(17)	
C(21)-P(1)-C(31)	109.8(12)		. ,	
C(21) - P(1) - C(41)	115.4(12)	W-C(1)-I(1)	145(2)	
C(31) - P(1) - C(41)	105.2(12)	W-C(1)-C(2)	72(3)	
	• •	W-C(2)-I(2)	142(2)	
C(51) - P(2) - C(51)	107.4(18)	W-C(2)-C(1)	75(3)	
C(51)-P(2)-C(61)	111.0(11)	I(1) - C(1) - C(2)	142(4)	

1) ist ganz analog der der anderen Pentahalogeno-dihalogenacetylenwolframationen [1-3]. Der Diiodacetylenligand ist seitlich und im Rahmen der Messgenauigkeit symmetrisch an das Wolframatom gebunden. Die grosse Elektronendichte der WC-Bindungen verursacht einen starken *trans*-Effekt, der sich in dem deutlich längeren W-F(5)-Bindungsabstand von 199 pm im Vergleich zu den übrigen W-F-Abständen von 191 pm kundtut. Zugleich werden dadurch die Fluoratome F(1) bis F(4) in Richtung auf F(5) abgedrängt, so dass das Wolframatom mit ihnen keine gemeinsame Ebene bilden kann. Die Verhältnisse sind ähnlich denen am Anion des AsPh₄[WOF₅] [10], bei dem von dem Oxoliganden ein vergleichbarer *trans*-Effekt ausgeht. Die WF-Bindungslängen sind dort mit 185 pm etwas kürzer als im $[WF_5(C_2I_2)]^{2-}$ -Ion, was vor allem mit der kleineren Ladung des $[WOF_5]^{-}$ -Ions zusammenhängt.

I(2)-C(2)-C(1)

143(4)

101.3(19)

Von Interesse ist die Umgebung des Silberions (Fig. 2). Die nächsten Nachbarn sind zwei Iodatome zweier $[WF_5(C_2I_2)]^{2-}$ -Ionen mit Ag...I(1)-Abständen von 339 pm; sie schliessen einen IAgI-Winkel von 115.2° ein. Die Ag...I(1)-Abstände sind deutlich kürzer als der geschätzte Ag...I-Van der Waals-Abstand von 420 pm, jedoch länger als die Ag-I-Bindungsabstände in den Verbindungen CsAg₂I₃ (279 bis 290 pm [11]) und K₂AgI₃ (281 bis 285 pm [12]) mit verzerrt tetraedrisch umgebenen Silberatomen. Zwei weitere Iodatome sind in der Struktur des (PPh₄)₃Ag[WF₅(C₂I₂)]₂ 448 pm weit vom Ag⁺-Ion entfernt, was länger ist als der

TABELLE 3

C(61) - P(2) - C(61)

TABELLE 4

ATOMKOORDINATEN UND PARAMETER DER ISOTROPEN THERMISCHEN SCHWING-UNG (Å²) FÜR (PPh₄)₃Ag[WF₅(C₂I₂)]₂. TEMPERATURFAKTOR: $exp(-8\pi^2 U \sin^2\theta/\lambda^2)$. DIE *U*-WERTE FÜR W, I, Ag UND P WURDEN ALS ÄQUIVALENTE WERTE AUS DEN PARAME-TERN DER ANISOTROPEN THERMISCHEN SCHWINGUNG BERECHNET [15]

Atom	x	,	Z	U
w	0.3672(0)	0.2637(2)	0.5589(3)	0.046(1)
I(1)	0.4385(2)	0.4316(1)	0.3668(2)	0.071(7)
I(2)	0.4077(1)	0.4473(6)	0.9201(7)	0.113(4)
C(1)	0.4037(8)	0.373(3)	0.531(5)	0.026(8)
C(2)	0.396(1)	0.374(4)	0.677(6)	0.05(1)
F(1)	0.3898(7)	0.152(3)	0.423(5)	0.073(9)
F(2)	0.3502(6)	0.347(3)	0.364(4)	0.054(7)
F(3)	0.3760(7)	0.155(3)	0.741(4)	0.062(8)
F(4)	0.3358(7)	0.350(3)	0.684(4)	0.062(8)
F(5)	0.3357(5)	0.144(2)	0.511(3)	0.039(6)
Ag	0.5000	0.5000	0.1345(7)	0.056(3)
P(1)	0.1884(3)	0.306(1)	0.261(2)	0.043(7)
P(2)	0.5000	0.0000	0.336(2)	0.04(1)
C(12)	0.1758(6)	0.077(3)	0.104(4)	0.06(1)
C(13)	0.1801(6)	-0.012(3)	-0.025(4)	0.07(2)
C(14)	0.2027(6)	0.005(3)	-0.147(4)	0.06(1)
C(15)	0.2210(6)	0.110(3)	-0.139(4)	0.07(2)
C(16)	0.2168(6)	0.198(3)	-0.010(4)	0.07(2)
C(11)	0.1942(6)	0.182(3)	0.111(4)	0.04(1)
C(22)	0.1983(6)	0.551(3)	0.157(4)	0.06(1)
C(23)	0.1941(6)	0.649(3)	0.043(4)	0.05(1)
C(24)	0.1751(6)	0.635(3)	-0.099(4)	0.06(2)
C(25)	0.1604(6)	0.522(3)	-0.125(4)	0.06(1)
C(26)	0.1646(6)	0.424(3)	-0.010(4)	0.05(1)
C(21)	0.1836(6)	0.438(3)	0.131(4)	0.04(1)
C(32)	0.2456(8)	0.270(3)	0.377(4)	0.06(1)
C(33)	0.2695(8)	0.288(3)	0.490(4)	0.07(2)
C(34)	0.2664(8)	0.369(3)	0.629(4)	0.07(2)
C(35)	0.2394(8)	0.432(3)	0.655(4)	0.07(2)
C(36)	0.2156(8)	0.414(3)	0.541(4)	0.06(1)
C(31)	0.2187(8)	0.333(3)	0.402(4)	0.07(2)
C(42)	0.1567(6)	0.172(3)	0.498(4)	0.06(2)
C(43)	0.1332(6)	0.153(3)	0.613(4)	0.06(1)
C(44)	0.1102(6)	0.241(3)	0.627(4)	0.07(1)
C(45)	0.1108(6)	0.348(3)	0.525(4)	0.06(1)
C(46)	0.1343(6)	0.367(3)	0.410(4)	0.035(9)
C(41)	0.1573(6)	0.279(3)	0.396(4)	0.04(1)
C(52)	0.5124(7)	0.231(3)	0.490(4)	0.07(2)
C(53)	0.5076(7)	0.321(3)	0.617(4)	0.08(2)
C(54)	0.4840(7)	0.307(3)	0.733(4)	0.07(2)
C(55)	0.4651(7)	0.204(3)	0.721(4)	0.08(2)
C(56)	0.4699(7)	0.114(3)	0.594(4)	0.07(2)
C(51)	0.4935(7)	0.128(3)	0.478(4)	0.05(1)
C(62)	0.5552(8)	-0.058(3)	0.190(5)	0.05(1)
C(63)	0.5784(8)	- 0.036(3)	0.075(5)	0.10(2)
C(64)	0.5772(8)	0.068(3)	-0.034(5)	0.09(2)
-C(65)	0.5527(8)	0.149(3)	-0.026(5)	0.09(2)
C(66)	0.5295(8)	0.126(3)	0.090(5)	0.08(2)
C(61)	0.5307(8)	0.022(3)	0.198(5)	0.06(1)

Fig. 2. Stereoskopische Ansicht der Elementarzelle von $(PPh_4)_3 Ag[WF_5(C_2I_2)]_2$.

Van der Waals-Abstand; insgesamt ergibt sich so eine verzerrt trapezförmige Umgebung von Iodatomen für das Silberion.

Es sind zwei kristallographisch voneinander unabhängige PPh_4^+ -Ionen vorhanden, von denen eines sich auf einer kristallographischen zweizähligen Drehachse befindet. Die Ionen sind in Richtung c zu Säulen gestapelt, in einer Art, die bei Tetraphenylphosphonium-Ionen häufig anzutreffen ist [13] (Fig. 2). Die Gitterkonstante c entspricht der auch sonst gefundenen Translationsperiode innerhalb der Säulen.

Experimenteller Teil

Die Versuche erfordern Ausschluss von Feuchtigkeit und Sauerstoff; sie wurden unter Argon vorgenommen. Acetonitril, CH_2Cl_2 und CCl_4 wurden über P_4O_{10} destilliert. $PPh_4[WCl_5(C_2I_2)]$ erhielten wir wie unlängst beschrieben [1]. AgF wurde nach [14] unter Rotlicht aus Silbercarbonat und Fluorwasserstoffsäure hergestellt und bei 60 bis 70°C im Vakuum getrocknet. Das IR-Spektrum wurde mit Hilfe eines Perkin-Elmer-Gerätes 577 registriert; CsI-Scheiben, Nujol-verreibung.

 $(PPh_4)_3Ag[WF_5(C_2I_2)]_2$. 0.50 g PPh₄(C₂I₂)] · 0.5CH₂Cl₂ (0.49 mmol) werden mit 0.76 g AgF (6 mmol) in einem Teflonkölbchen in 10 ml CH₃CN 24 h unter Lichtausschluss gerührt. Man filtriert dann das Silberhalogenidgemisch und engt das Filtrat auf 5 ml ein. Eine geringe Menge PPh₄[WOF₅] wird abfiltriert und die Lösung in Vakuum zur Trockne eingeengt. Umkristallisieren aus CH₂Cl₂/CCl₄ führten beim Abkühlen auf 5°C zu roten Einkristallen. Ausbeute 0.12 g (15%). Elementaranalyse: Gef.: C, 40.15; H, 2.69. AgC₇₆H₆₀I₄F₁₀P₃W₂ (2239.4) ber.: C, 40.76, H 2.70%. Die Anwesenheit von Silber wurde durch eine röntgenfluoreszenzspektroskopische Analyse bestätigt.

Dank. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie grosszügig mit Sachmitteln gefördert. Für die röntgenfluoreszenzspektroskopische Analyse danken wir Herrn Dipl.-Chem. Rolf Arnold, Marburg.

Literatur

- 1 K. Stahl, U. Müller und K. Dehnicke, Z. Anorg. Allg. Chem., 527 (1985) 7.
- 2 K. Stahl, F. Weller und K. Dehnicke, Z. Anorg. Allg. Chem., 533 (1986) 73.
- 3 K. Stahl, A. El-Kholi, U. Müller und K. Dehnicke, J. Organomet. Chem., 316 (1986) 95.
- 4 J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen II, G. Thieme-Verlag, Stuttgart-New York 1986.
- 5 U. Müller, CADLP, Programm zur Auswertung und Lp-Korrektur von Diffraktometerdaten, Marburg 1971.
- 6 G.M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, England 1976.
- 7 C.K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965.
- 8 D.T. Cromer und J.B. Mann, Acta Crystallogr., A, 24 (1968) 321.
- 9 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 10 W. Massa, S. Hermann und K. Dehnicke, Z. Anorg. Allg. Chem., 493 (1982) 33.
- 11 C. Brink, N.F. Binnendijk und J. van de Linde, Acta Crystallogr., 7 (1954) 176.
- 12 M.M. Thackeray und J. Coetzer, Acta Crystallogr. B, 31 (1975) 2339.
- 13 U. Müller, Acta Crystallogr. B, 36 (1980) 1075.
- 14 F.A. Anderson, B. Bak und A. Hillebert, Acta Chem. Scand., 7 (1953) 236.
- 15 W.C. Hamilton, Acta Crystallogr., 12 (1959) 609.